Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 2, 2026
- 
            Free, publicly-accessible full text available November 2, 2026
- 
            Free, publicly-accessible full text available September 17, 2026
- 
            The accurate and prompt mapping of flood-affected regions is important for effective disaster management, including damage assessment and relief efforts. While high-resolution optical imagery from satellites during disasters presents an opportunity for automated flood inundation mapping, existing segmentation models face challenges due to noises such as cloud cover and tree canopies. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), terrain guidance was utilized by recent graphical models such as hidden Markov trees (HMTs) to improve segmentation quality. Unfortunately, these methods either can only handle a small area where water levels at different locations are assumed to be consistent or require restricted assumptions such as there is only one river channel. This article presents an algorithm for flood extent mapping on large-scale Earth imagery, applicable to a large geographic area with multiple river channels. Since water level can vary a lot from upstream to downstream, we propose to detect river pixels to partition the remaining pixels into localized zones, each with a unique water level. In each zone, water at all locations flows to the same river entry point. Pixels in each zone are organized by an HMT to capture water flow directions guided by elevations. Moreover, a novel regularization scheme is designed to enforce inter-zone consistency by penalizing pixel-pairs of adjacent zones that violate terrain guidance. Efficient parallelization is made possible by coloring the zone adjacency graph to identify zones and zone-pairs that have no dependency and hence can be processed in parallel, and incremental one-pass terrain-guided scanning is conducted wherever applicable to reuse computations. Experiments demonstrate that our solution is more accurate than existing solutions and can efficiently and accurately map out flooding pixels in a giant area of size 24,805 × 40,129. Despite the imbalanced workloads caused by a few large zonal HMTs dominating the serial computing time, our parallelization approach is effective and manages to achieve up to 14.3× speedup on a machine with Intel Xeon Gold 6126 CPU @ 2.60 GHz (24 cores, 48 threads) using 32 threads.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            Free, publicly-accessible full text available June 22, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available June 3, 2026
- 
            Adverse clinical events related to unsafe care are among the top ten causes of death in the U.S. Accurate modeling and prediction of clinical events from electronic health records (EHRs) play a crucial role in patient safety enhancement. An example is modeling de facto care pathways that characterize common step-by-step plans for treatment or care. However, clinical event data pose several unique challenges, including the irregularity of time intervals between consecutive events, the existence of cycles, periodicity, multi-scale event interactions, and the high computational costs associated with long event sequences. Existing neural temporal point processes (TPPs) methods do not effectively capture the multi-scale nature of event interactions, which is common in many real-world clinical applications. To address these issues, we propose the cross-temporal-scale transformer (XTSFormer), specifically designed for irregularly timed event data. Our model consists of two vital components: a novel Feature-based Cycle-aware Time Positional Encoding (FCPE) that adeptly captures the cyclical nature of time, and a hierarchical multi-scale temporal attention mechanism, where different temporal scales are determined by a bottom-up clustering approach. Extensive experiments on several real-world EHR datasets show that our XTSFormer outperforms multiple baseline methods.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
